博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[机器学习实战] 使用ID3算法的决策树
阅读量:5097 次
发布时间:2019-06-13

本文共 9000 字,大约阅读时间需要 30 分钟。

决策树-使用ID3算法划分数据集

1. 信息增益

from math import log# 计算给定数据集的香农信息熵def calcShannonEnt(dataSet):    numEntries = len(dataSet)    labelCounts = {}    for featVec in dataSet:        currentLabel = featVec[-1]        if currentLabel not in labelCounts.keys():            labelCounts[currentLabel] = 0        labelCounts[currentLabel] += 1    shannonEnt = 0.0    for key in labelCounts:        prob = float(labelCounts[key])/numEntries        shannonEnt -= prob * log(prob,2)    return shannonEnt
def createDataSet():    dataSet = [[1,1,'yes'],              [1,1,'yes'],              [1,0,'no'],              [0,1,'no'],              [0,1,'no']]    labels = ['no surfacing', 'filppers']    return dataSet, labels
myDat, labels = createDataSet()
myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
calcShannonEnt(myDat)
0.9709505944546686
myDat[0][-1]='maybe'myDat
[[1, 1, 'maybe'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
calcShannonEnt(myDat)
1.3709505944546687

2. 划分数据集

# 按照给定特征featvec[axis]划分数据集,返回featVec[axis]==value的集合def splitDataSet(dataSet, axis, value):    retDataSet = []    for featVec in dataSet:        if featVec[axis] == value:            reducedFeatVec = featVec[:axis]            reducedFeatVec.extend(featVec[axis+1:]) # 抽取            retDataSet.append(reducedFeatVec)    return retDataSet
myDat, labels = createDataSet()
myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
splitDataSet(myDat,0,1)
[[1, 'yes'], [1, 'yes'], [0, 'no']]
splitDataSet(myDat,0,0)
[[1, 'no'], [1, 'no']]
# 选择最好的数据集划分方式def chooseBestFeatureToSplit(dataSet):    numFeatures = len(dataSet[0]) - 1    baseEntropy = calcShannonEnt(dataSet)    bestInfoGain = 0.0    bestFeature = -1    for i in range(numFeatures):        featList = [example[i] for example in dataSet]        uniqueVals = set(featList)        newEntropy = 0.0        for value in uniqueVals:            subDataSet = splitDataSet(dataSet, i, value)            prob = len(subDataSet)/float(len(dataSet))            newEntropy += prob * calcShannonEnt(subDataSet)        infoGain = baseEntropy - newEntropy        if (infoGain > bestInfoGain):            bestInfoGain = infoGain            bestFeature = i    return bestFeature
myDat, labels = createDataSet()
chooseBestFeatureToSplit(myDat)
0
myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]

3. 递归构造决策树

import operator# 如果数据集已经处理了所有属性,凡是类标签依然不是唯一,此时可以通过多数表决的方式定义该叶子节点def majorityCnt(classList):    classCount = {}    for vote in classList:        if vote not in classCount.keys():            classCount[vote] = 0        classCount[vote] += 1    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)    return sortedClassCount[0][0]
#创建树def createTree(dataSet, labels):    classList = [example[-1] for example in dataSet]    if classList.count(classList[0]) == len(classList): # 类别完全相同则停止继续划分        return classList[0]    if len(dataSet[0]) == 1: # 已经遍历了所有特征,返回多数表决的结果        return majorityCnt(classList)    bestFeat = chooseBestFeatureToSplit(dataSet)    bestFeatLabel = labels[bestFeat]    myTree = {bestFeatLabel:{}}  # 使用字典类型存储树    del(labels[bestFeat])    featValues = [example[bestFeat] for example in dataSet]    uniqueVals = set(featValues) # 得到列表包含的所有属性值    for value in uniqueVals:        subLabels = labels[:] # !!复制了类标签,因为labels是列表类型的,参数按照引用的方式传递需要保证不改变原始列表的内容        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)    return myTree
myDat, labels = createDataSet()myTree = createTree(myDat, labels)myTree
{'no surfacing': {0: 'no', 1: {'filppers': {0: 'no', 1: 'yes'}}}}

4. 构造注解树

# 使用文本注解工具(annotations)绘制树节点import matplotlib.pyplot as plt%matplotlib inline# 定义文本框和箭头格式decisionNode = dict(boxstyle='sawtooth', fc='0.8')leafNode = dict(boxstyle='round4', fc='0.8')arrow_args = dict(arrowstyle='<-')# 绘制带箭头的注解def plotNode(nodeTxt, centerPt, parentPt, nodeType):    # centerPt是文本框的位置(xytext), parentPt是箭头起始位置    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction',\                           va='center', ha='center', bbox=nodeType, arrowprops=arrow_args)
def createPlot():    fig = plt.figure(1, facecolor='white')    fig.clf() # 清空绘图区    createPlot.ax1 = plt.subplot(111, frameon=False)    plotNode('decisionNode', (0.5,0.1), (0.1,0.5), decisionNode)    plotNode('leafNode', (0.8,0.1), (0.3,0.8), leafNode)    plt.show()
createPlot()

1180557-20170623142044132-2041767557.png

# 获取叶节点的数目和树的层数,来确定x轴的长度和y轴的高度def getNumLeafs(myTree):    numLeafs = 0    firstStr = list(myTree.keys())[0]    secondDict = myTree[firstStr]    for key in secondDict.keys():        if type(secondDict[key]).__name__ == 'dict':            numLeafs += getNumLeafs(secondDict[key])        else: numLeafs += 1    return numLeafs
def getTreeDepth(myTree):    maxDepth = 0    firstStr = list(myTree.keys())[0]    secondDict = myTree[firstStr]    for key in secondDict.keys():        if type(secondDict[key]).__name__ == 'dict':            thisDepth = 1 + getTreeDepth(secondDict[key])        else: thisDepth = 1        if thisDepth > maxDepth: maxDepth = thisDepth    return maxDepth
# 预先存储两个树的信息def retrieveTree(i):    listOfTrees = [{'no surfacing': {0: 'no', 1: {'filppers': {0: 'no', 1: 'yes'}}}},\                  {'no surfacing': {0: 'no', 1: {'filppers': {0: {'head':{0:'no', 1: 'yes'}}, 1:'no'}}}}]    return listOfTrees[i]
myTree = retrieveTree(0)
list(myTree.keys())[0]
'no surfacing'
getNumLeafs(myTree)
3
getTreeDepth(myTree)
2
# PlotTree# 在父子节点间填充文本信息def plotMidText(cntrPt, parentPt, txtString):    xMid = (parentPt[0] - cntrPt[0])/2.0 + cntrPt[0]    yMid = (parentPt[1] - cntrPt[1])/2.0 + cntrPt[1]    createPlot.ax1.text(xMid, yMid, txtString)
def plotTree(myTree, parentPt, nodeTxt):    numLeafs = getNumLeafs(myTree)    depth = getTreeDepth(myTree)    firstStr = list(myTree.keys())[0]    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)    plotMidText(cntrPt, parentPt, nodeTxt) # 标记子节点属性值    plotNode(firstStr, cntrPt, parentPt, decisionNode) # 绘制带箭头的注解    secondDict = myTree[firstStr]    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD # 减少y偏移    for key in secondDict.keys():        if type(secondDict[key]).__name__ == 'dict':            plotTree(secondDict[key], cntrPt, str(key))        else:            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW # 右移x坐标            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD # !!当前分支画完返回上一位置
# 重新写createPlotdef createPlot(inTree):    fig = plt.figure(1, facecolor='white')    fig.clf()    axprops = dict(xticks=[], yticks=[])    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    plotTree.totalW = float(getNumLeafs(inTree)) # 全局变量存储树的宽和高    plotTree.totalD = float(getTreeDepth(inTree))    plotTree.xOff = -0.5/plotTree.totalW    plotTree.yOff = 1.0    plotTree(inTree, (0.5,1.0), '')    plt.show()
myTree
{'no surfacing': {0: 'no', 1: {'filppers': {0: 'no', 1: 'yes'}}}}
createPlot(myTree)

1180557-20170623142057570-886524715.png

myTree['no surfacing'][3] = 'maybe'
createPlot(myTree)

1180557-20170623142104070-109466776.png

5. 使用决策树进行分类

# 使用决策树的分类函数def classify(inputTree, featLabels, testVec):    firstStr = list(inputTree.keys())[0]    secondDict = inputTree[firstStr]    featIndex = featLabels.index(firstStr) # 用index()将标签字符串转换为索引,方便查找    for key in secondDict.keys():        if testVec[featIndex] == key:            if type(secondDict[key]).__name__ == 'dict':                classLabel = classify(secondDict[key], featLabels, testVec)            else: classLabel = secondDict[key]    return classLabel
myDat, labels = createDataSet()labels
['no surfacing', 'filppers']
myTree = retrieveTree(0)myTree
{'no surfacing': {0: 'no', 1: {'filppers': {0: 'no', 1: 'yes'}}}}
classify(myTree, labels, [1,1])
'yes'
classify(myTree, labels, [1,0])
'no'
# 使用pickle模块存储决策树def storeTree(inputTree, filename):    import pickle    fw = open(filename,'wb')    pickle.dump(inputTree, fw)    fw.close()
def grabTree(filename):    import pickle    fr = open(filename,'rb')    return pickle.load(fr)
storeTree(myTree, 'classifierStorage.txt')
grabTree('classifierStorage.txt')
{'no surfacing': {0: 'no', 1: {'filppers': {0: 'no', 1: 'yes'}}}}

示例:使用决策树预测隐形眼镜类型

fr = open('data/lenses.txt')lenses = [inst.strip().split('\t') for inst in fr.readlines()]lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']lensesTree = createTree(lenses, lensesLabels)print(lensesTree)
{'tearRate': {'normal': {'astigmatic': {'yes': {'prescript': {'hyper': {'age': {'presbyopic': 'no lenses', 'young': 'hard', 'pre': 'no lenses'}}, 'myope': 'hard'}}, 'no': {'age': {'presbyopic': {'prescript': {'hyper': 'soft', 'myope': 'no lenses'}}, 'young': 'soft', 'pre': 'soft'}}}}, 'reduced': 'no lenses'}}
createPlot(lensesTree)

1180557-20170623142114929-444281752.png

匹配的选项过多导致Overfitting的问题,如果一个叶子节点只能增加少许信息,则可以删除该节点。

ID3算法的缺点:无法直接处理数值型数据。

转载于:https://www.cnblogs.com/daigz1224/p/7069719.html

你可能感兴趣的文章
SQL语句
查看>>
JS - 给数组的原型添加去掉重复元素的distinct方法
查看>>
打印插件
查看>>
vue、rollup、sass、requirejs组成的vueManager
查看>>
MySQL授权用户登录访问指定数据库
查看>>
【转】Linux下的多线程编程
查看>>
一个优秀的研发团队应该具备什么特征
查看>>
Jenkins问题汇总
查看>>
QT 项目文件介绍
查看>>
tr69c 调试报错检查
查看>>
dl,dt,dd标签的使用
查看>>
Linux 查看文件 cat与 more 用法
查看>>
ZOJ 1244
查看>>
一次笔试题目附答案(sql答卷)
查看>>
【转】CSS Nuggest
查看>>
SQL2008"阻止保存要求重新创建表的更改"问题的解决
查看>>
52、[源码]-Spring源码总结
查看>>
Android开发中整合测试注意事项
查看>>
DevExpress ASP.NET v18.2新功能详解(三)
查看>>
查看linux系统版本命令
查看>>